
Leg-by-leg Bearings-Only

Target Motion Analysis

Without Observer Maneuver

CLAUDE JAUFFRET

DENIS PILLON

ANNIE-CLAUDE PIGNOL

In a previous paper [7], the problem of bearings-only tracking

of targets whose trajectory is composed of two legs from a non-

maneuvering observer was addressed and the maximum likelihood

estimate (MLE) proposed. We named it bearings-only maneuvering

target motion analysis (BOMTMA). Recently in [9], we proposed

another estimate based on leg-by-leg tracking and compare its

performance to the MLE. We give here the extended version of [9],

together with some comparison between the conventional bearings-

only target motion analysis (BOTMA) and the BOMTMA.
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1. INTRODUCTION

The conventional problem of bearings-only target

motion analysis consists of estimating the trajectory of a

target (or source) whose velocity is constant during the

period of measurement [13]. This requires an efficient

maneuver of the observer to guarantee observability

[6][12] and to obtain an accurate estimate [11][15]. In

a recent paper [7], we proved that, conversely, if the

observer has a constant velocity and the source changes

its heading (so its trajectory is composed of two legs at

constant speed–see Fig. 5), then, subject to a condition

on velocity vectors of the two mobiles, the source

is observable. For this problem, called bearings-only

maneuvering target motion analysis (BOMTMA), we

proposed the maximum likelihood estimate (MLE) and

compared its performance with the Cramér-Rao lower

bound (CRLB), revealing that this estimate is relatively

efficient. The major criticisms are

1) The operator must wait until the source has

changed its heading to run the computation of the esti-

mate.

2) The computation by a numerical routine needs a

“good guess” (to reduce the risk of converging toward

a local minimum).

3) The computation takes time.

In this paper, we propose a new approach to this

problem which consists of estimating what is observable

during the first leg of the source, then during the second

one, and finally of fusing these two estimated state vec-

tors to obtain an estimate of the source trajectory. Note

that in the classic BOTMA, the leg-by-leg approach has

been employed for the same reasons [2][14][16]. We

will assume that the maneuver time is known, hence we

will not address the problem of detecting the maneuver

(see [5] and [17] for this topic).

The paper is composed of three main sections:

² In Section 2, we present the problem of target motion
analysis (TMA) when neither the source nor the

observer maneuvers.

² A new bearings-only maneuvering target motion anal-
ysis by a non-maneuvering observer is proposed in

Section 3.

² In Section 4, some examples are provided to compare
respective performances of BOTMA and BOMTMA,

in terms of estimated range accuracy.

2. PROBLEM FORMULATION WHEN NEITHER THE
SOURCE NOR THE OBSERVER MANEUVERS

We consider in this section the case where the source

and the observer are moving in the same plane with their

own constant velocity vectors (see Fig. 1).

2.1. Measurement Equation and Trajectory Model

Consider a source and a passive observer (also called

own ship). From here on, the subscript S is used to
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Fig. 1. Example of observer and source trajectories.

represent source quantities and O to represent observer

quantities.

At time t, the respective location vectors of the
source and of the observer are PS(t) = [xS(t) yS(t)]

T

and PO(t) = [xO(t) yO(t)]
T relative to a Cartesian coor-

dinate system. Similarly, the vectors VS = [_xS _yS]
T and

VO = [_xO _yO]
T denote the source and own ship velocity

vectors, respectively. We define also the relative velocity

vector of the source w.r.t. the observer as VR = VS ¡VO.
The corresponding speeds and headings (or courses) are

denoted vS , vO, vR, cS , cO and cR.
At time tk, the observer measures the azimuth of the

line of sight in which it detects the source:

¯k = atan

·
xS(tk)¡ xO(tk)
yS(tk)¡ yO(tk)

¸
+ "k (1)

where "k is assumed to be a zero-mean Gaussian random
noise of variance ¾2k .
The BOTMA aims to estimate

XS = [xS(t
¤) yS(t

¤) _xS _yS]
T

from the collected measurement set f¯1,¯2, : : : ,¯Ng pro-
vided observability is guaranteed (t¤ is an arbitrary ref-
erence time). The vector XO = [xO(t

¤) yO(t
¤) _xO _yO]

T

is known. It is well known that if the observer does

not maneuver or if its maneuver is ambiguous (see [6]

and [10]), then the vector XS is not observable. In the
coming paragraph, we explore the situations where the

observer keeps its velocity vector during the scenario.

2.2. The Set of Homothetic Trajectories

The trajectory of a vehicle moving at a constant

velocity vector [ _x _y]T is described by the following
classic equations:

x(t) = x(t¤) + (t¡ t¤) _x
y(t) = y(t¤) + (t¡ t¤) _y:

(2)

Such a trajectory is hence defined by the vector X =
[x(t¤) y(t¤) _x _y]T.
The equation of the noise-free bearings being μ(t) =

atan[(xS(t)¡ xO(t))=(yS(t)¡ yO(t))], it is straightforward
to check that the set of trajectories producing the same

noise-free-bearings from the observer is

¤= fX(¸) = ¸(XS ¡XO)+XO, for ¸ > 0g:
If μ(t) is not constant, there is no other trajectory

set that generates the same noise-free data when the

source and observer are moving at constant velocity

vectors [10]. From now on, we will assume that μ(t)
is not constant.

Note that the vector

X(¸) = [x1(¸) x2(¸) x3(¸) x4(¸)]
T

defines a ¸-homothetic trajectory (in particular, X(1) =
XS).
It follows that XS is not observable from the bearing

measured by the observer. In short, in this context,

the BOTMA is impossible. We can however estimate

a parameter (or a state vector) that characterizes ¤. We
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call the estimation of this parameter (or any equivalent

parameter) partial bearing-only target motion analysis

(see Subsection 2.4).

The previous set ¤ can be characterized by any of its
elements X(¸). At any X(¸) of ¤, there is a correspond-
ing unique three dimensional vector Y = [y1 y2 y3]

T de-

fined by

y1 = atan

·
x1(¸)¡ xO(t¤)
x2(¸)¡ yO(t¤)

¸

y2 =

p
(x3(¸)¡ _xO)2 + (x4(¸)¡ _yO)2p

[x1(¸)¡ xO(t¤)]2 + [x2(¸)¡ yO(t¤)]2

y3 = atan

·
x3(¸)¡ _xO
x4(¸)¡ _yO

¸
:

(3)

Indeed, the coordinates of Y are independent of ¸:

y1 = μ(t¤), y2 =
vR
½a(t

¤)
and y3 = cR

where ½a(t
¤) is the actual range between the source and

the observer at time t¤ (see [6, 7]). Note that because
μ(t) is not constant, we have VS 6= VO, hence y2 > 0.
We can plot the set of homothetic trajectories ¤

using the graphs of the two functions

½ 7! v(½) =
q
(½y2 siny3 + _xO)

2 + (½y2 cosy3 + _yO)
2

(4a)

½ 7! c(½) = atan

·
½y2 siny3 + _xO
½y2 cosy3 + _yO

¸
(4b)

where [v(½) c(½)]T are the polar coordinates of the

velocity vector of any source of ¤ at a distance ½ (¸ 0) at
time t¤ (the corresponding ¸ is equal to ½=½a(t

¤)). Note
that v(½a(t

¤)) = vS and c(½a(t
¤)) = cS .

We insist on the fact that

1) any element of ¤ allows us to construct the vector
Y (see Eq. (3));
2) conversely, the vector Y allows us to construct

any element of ¤, thank to the following equation

X

μ
½

½a(t
¤)

¶
=

½

½a(t
¤)
(XS ¡XO)+XO

=
½

½a(t
¤)

26664
½a(t

¤)siny1
½a(t

¤)cosy1
½a(t

¤)y2 siny3
½a(t

¤)y2 cosy3

37775+XO:
This equivalence between Y and ¤ is the fundamental
property of the partial bearings-only TMA which will

be developed in Section 3. As a consequence, we can

choose the vector Y as well any vector in ¤. The choice
of a state vector must be guided by simplicity.

Because it is expressed in polar coordinates, Y is

subject to a constraint: y2 > 0, whereas any vector of
¤ (expressed in Cartesian coordinates) is not. So, from
the point of view of the estimation, choosing a particular

vector of ¤ as state vector is more convenient. A way to
“stay” in ¤ is to fix one coordinate of a 4-dimensional

vector X and “adjust” the remained coordinates to Y:
For example, if we fix the first coordinate of an par-

ticular element of ¤ to the value xfix, the corresponding
¸ will be ¸= (xfix¡ xO(t¤))=(xS(t¤)¡ xO(t¤)); however,
we must choose xfix such that ¸ be positive. This will
help us in Subsection 2.4.

2.3. Properties of v(½) and c(½)

First of all, we note that v(0) and c(0) are equal

to the observer’s speed and heading, respectively. This

corresponds to the degenerate case where the observer

and the source are located at the same position.

2.3.1. Study of vS(½)
Let us compute its derivative w.r.t. ½.

d

d½
v(½) =

1

v(½)
[(½y2 siny3 + _xO)y2 siny3

+ (½y2 cosy3 + _yO)y2 cosy3]

=
y2
v(½)

[½y2 + _xO siny3 + _yO cosy3]

=
y2
v(½)

·
½y2 +

1

vR
VTO (VS ¡VO)

¸
:

The sign of this derivative is hence the sign of ½y2 +
_xO siny3 + _yO cosy3. It is equal to 0 when ½=¡(1=y2vR)
¢VTO (VS ¡VO).
If VTO (VS ¡VO)¸ 0 or equivalently VTO VS ¸ v2O, the

function vS(½) is injective, i.e. the mapping ½ 7! v(½)

satisfies the one-to-one condition.

We draw two other conclusions:

1) The one-to-one condition holds if and only if
_xS sincO + _yS coscO ¸ vO.
2) The set of source’s velocity vectors VS satisfying

the one-to-one condition of the speed is½
VS = ®

·
sincO

coscO

¸
¡¯

·
coscO

sincO

¸
,

for any ®¸ vO (no condition for ¯) and VS 6= VO
¾

Note that ® and ¯ that help define the above set are

dummy variables.

2.3.2. Study of c(½)
First of all, note that c(½) goes to cR when ½!1.
A basic computation yields

d

d½
c(½) =

y2( _yO siny3¡ _xO cosy3)
v2(½)

which has the same sign as

vR( _yO siny3¡ _xO cosy3) =¡det[VO, (VS ¡VO)],
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Fig. 2. (a) Some elements of ¤. (b) The corresponding speed and heading graphs.

which is independent of ½. Hence the mapping ½ 7! c(½)
is monotonic while the mapping ½ 7! v(½) can be not.
Fig. 2 gives an example of an increasing speed

function for VO = [3 0]
T (m/s) and VS = [4 2]

T (m/s)

corresponding to (®,¯) = (4,2); the initial positions are
PS(t0) = [3:8 1:4]

T (km) and PO(t0) = [2 0]
T (km). Note

that the condition _xS sincO+ _yS coscO ¸ vO is satisfied.
In Fig. 2(a), letters O and S denote the initial position
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Fig. 3. (a) Some elements of ¤. (b) The corresponding speed and the heading graphs.

of the observer and that of the actual source and several

homothetic solutions. Fig. 2(b) depicts ½ 7! v(½) and
½ 7! c(½); the small circles correspond to the actual

speed and heading.

Fig. 3 illustrates the case of a non-monotonic speed

function for VO = [3 0]
T (m/s) and VS = [1 2]

T (m/s)

corresponding to (®,¯) = (1,2). The initial positions are
PS(t0) = [6:2 6:7]

T (km) and PO(t0) = [2 0]
T (km). Here,
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the condition _xS sincO+ _yS coscO ¸ vO is violated.
In this case, due to the non-monotony of the map-

ping ½ 7! v(½), a speed v would yield two corresponding
estimated ranges and courses as shown in Fig. 3(b).

2.4. Estimation of the Set of Homothetic Trajectories
(partial bearings-only TMA)

The available measured bearings (¯1,¯2, : : : ,¯N) are
taken at times (t1, t2, : : : , tN). Without loss of general-
ity, we choose t¤ = tN . Assuming the covariance ma-
trix of the random vector ("1 "2 ¢ ¢ ¢"N)T to be diagonal,
the log-likelihood function to be maximized is propor-

tional to the least squares criterion. The vector Y or

any vector in ¤ can be chosen as state vector. Because
of the simplicity of use of Cartesian coordinates, we

propose to estimate a particular element of ¤ by fix-

ing its first coordinate x1 to ½̄sin¯N + xO(tN) for con-
venience, ½̄ being arbitrarily chosen. We call it X. So
we only have to compute the last three coordinates of

X = [½̄sin¯N + xO(tN) y _x _y]T for which the criterion

C(X) =
PN
k=1(1=¾

2
k )[¯k ¡ μk(X)]

2 is minimal.

The Gauss-Newton method [3] is used for the min-

imization, initialized at

Xinit =

266666664

½̄sin¯N + xO(tN)

½̄cos¯N + yO(tN)

½̄sin¯N + xO(tN)¡ ½̄sin¯1¡ xO(t1)
tN ¡ t1

½̄cos¯N + xO(tN)¡ ½̄cos¯1¡ xO(t1)
tN ¡ t1

377777775
:

As pointed out previously, the maximum likelihood

estimate X̂ allows us to construct the set of estimated

homothetic trajectories presented as the graphs of the

pair of functions

½ 7! v̂(½) =
q
(½ŷ2 sin ŷ3 + _xO)

2 + (½ŷ2 cos ŷ3 + _yO)
2

(5a)

½ 7! ĉ(½) = atan

·
½ŷ2 sin ŷ3 + _xO
½ŷ2 cos ŷ3 + _yO

¸
(5b)

where Ŷ = [ŷ1 ŷ2 ŷ3]
T is the vector corresponding to X̂

(with (3)).

The behavior of the estimator X̂ has been evaluated
for the following scenario: given a coordinate system,

the initial location of the source is [1000 2300]T (m)

with a velocity vector of [1 1:5]T (m/s). The ob-

server starts from [0 0]T (m) with a velocity vector

[1 0]T (m/s). The number of measurements is N = 450,
the time tk is equal to k£¢t, with ¢t= 4 s. The time
of reference is chosen to be tN . The standard deviation
of the measurements is 1±. The final range is 5,099 m.
For the initialization of the Gauss-Newton method, we

have chosen ½̄= 20 km.
Fig. 4 depicts an example of a 500-run Monte-Carlo

simulation: the 500 graphs are plotted in grey, while

the graphs of the functions v(½) and c(½) are in black,

together with the 95% confidence bands (deduced from

the CRLB). Detail of the computation of these bands is

given in the Appendix.

3. LEG-BY-LEG BOMTMA

3.1. Problem Formulation

Suppose now that the trajectory of the source is com-

posed of two legs at constant speed (cf. Fig. 5): the first

leg starts at t1 and finishes at time tM (assumed to be

known). Similarly, the second leg starts at tM and fin-

ishes at tK . This model of trajectory is simple, but it has
been widely adopted in the past, especially in submarine

environment (see [1] pp. 175—176 and [4]). The time

of the maneuver is assumed to be known; in reality, it

has to be estimated, for example by a sequential test;

this point, which is out of the scope of this paper, has

been addressed in [8]. Such a trajectory is hence param-

eterized by the vector Z = [xS(tK) yS(tK) vS cS,1 cS,2]
T

(coordinates of position at time tK , speed, courses of the
first and of second leg). Provided that VTO (VS,1¡VS,2) 6= 0
(observability condition-see its proof in [7]), the entire

source trajectory is observable. For this problem, we

proposed the maximum likelihood estimate in [7].

We propose here another estimate denoted Z̃ the

principle of which is as follows: First, we compute, for

leg #1, the estimate

X̂1 = [½̄sin¯M + xO(tM) ŷ1 _̂x1 _̂y1]
T

and for leg #2, the estimate

X̂2 = [½̄sin¯M + xO(tM) ŷ2 _̂x2 _̂y2]
T

with the common reference time tM and after having

fixed their respective first coordinates to a common

value, say ½̄sin¯M + xO(tM). These estimates are com-
puted following the partial BO-TMA principle as pre-

sented in Section 2.4. Second, we compute the two ho-

mothetic estimates, ¹(X̂1¡XO) +XO for the first leg and
¹(X̂2¡XO) +XO for the second, such that the estimated
velocities on each leg are equal, i.e.

k¹(V̂1¡VO)+VOk= k¹(V̂2¡VO)+VOk (6)

with V̂1 = [ _̂x1 _̂y1]
T and V̂2 = [ _̂x2 _̂y2]

T in order to satisfy

the constraint (6) (which is the strong assumptions of

the BOMTMA). The solution of (6), denoted ¹̃, and
equal to

¹̃=¡ 2(V̂1¡ V̂2)TVO
(kV̂1k2¡kV̂2k2¡2(V̂1¡ V̂2)TVO)

allows us to compute the corresponding homothetic

estimates on each leg

X̃1 = ¹̃(X̂1¡XO) +XO = [x̃1 ỹ1 _̃x1 _̃y1]
T

X̃2 = ¹̃(X̂2¡XO) +XO = [x̃2 ỹ2 _̃x2 _̃y2]
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Fig. 4. Results of 500 Monte-Carlo runs (on left v̂(½), and on right ĉ(½)).
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Fig. 5. Example of observer and source trajectories composed by two legs.

and the corresponding leg-by-leg BOMTMA Z̃ =
[x̃S(tK) ỹS(tK) ṽS c̃S,1 c̃S,2]

T, with

[x̃S(tK) ỹS(tK)]
T = [x̃2 ỹ2]

T

ṽS =

r
_̃x
2

2 + _̃y
2

2

c̃S,1 = atan

Ã
_̃x1

_̃y1

!

c̃S,2 = atan

Ã
_̃x2

_̃y2

!
:

REMARK by construction, x̃1 = x̃2 and

q
_̃x
2

1 + _̃y
2

1 =q
_̃x
2

2 + _̃y
2

2, but there is no reason that ỹ1 = ỹ2. So, an-
other solution must be [x̃S(tK) ỹS(tK)]

T = [x̃2 ỹ1]
T.

3.2. Problem Formulation

A 500-run Monte Carlo simulation allows the be-

havior of this new estimator to be appreciated. To com-

pare the MLE BOMTMA estimate Ẑ and the leg-by-leg

BOMTMA estimate Z̃, we use the scenario presented in
[7] which is illustrated in Fig. 6: let us recall that the

observer starts from the origin with a speed of 5 m/s

and a heading of 90±. Meanwhile, the source, with a
speed of 4 m/s, starts its trajectory at [0 km,10 km]T

with an initial heading of 90±. At time tM = 20 min,

it suddenly changes its course and its new heading is

240±. The total duration of the scenario is 30 min cor-
responding to 450 measurements (the sampling time is

¢t= 4 s). The standard deviation of the measurement
noise is 1±.
The average values of the coordinates of the two es-

timates, their respective biases and their empirical stan-

dard deviations are given in Table I. They are compared

to the true vector and the minimum standard deviations

deduced from the CRLB.

We observe an increase in the bias and the standard

deviation, but the quality of the leg-by-leg BOMTMA

estimator is only weakly degraded. Moreover, the com-

putation time of the leg-by-leg BOMTMA estimator is

2.5 times less than the BOMTMA computation time. A

compromise can probably be found: the leg-by-leg es-

timate can be used as an initial point for the BOMTMA

numerical routine. It will reduce the risk of stalling at

a local minimum. Fig. 7 shows the 500 estimates to-

gether with the 90% confidence ellipsoid deduced from

the CRLB.

4. COMPARISON OF THE RESPECTIVE
PERFORMANCES OF THE BOMTMA AND THE
CONVENTIONAL BOTMA

One can ask a relevant question concerning tactical

aspects: do situations exist in which the performance

of the BOMTMA is superior to the performance of

the BOTMA in terms of estimated range accuracy,

assuming that the antennas are the same?
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Fig. 6. 500 MLE BOMTMA estimates of the final position.

TABLE I

Comparison of Performances of the Two Estimators

ZK Units ZK,True Average of ẐK Average of Z̃K Bias of Ẑ Bias of Z̃ ¾CRLB ¾̂ of Ẑ ¾̃ of Z̃

xS(tK ) km 2.921 2.897 2.872 0.024 0.049 0.153 0.175 0.213

yS(tK ) km 8.800 8.828 8.875 0.028 0.075 0.283 0.308 0.364

vS m/s 4 4.10 4.10 0.10 0.10 0.03 0.13 0.17

cS,1 degree 90 90.5 89.4 0.5 0.6 12 12 13

cS,2 degree 240 240 241 0 1 7.5 7 9

For the conventional BOTMA, the observer must

correctly maneuver and it has to estimate a 4-dimen-

sional state vector [13], whereas for the BOMTMA, the

observer does not maneuver but it has to estimate a 5-

dimensional vector. Because the number of unknown is

less in BOTMA than in BOMTMA, one can think that

the BOMTMA returns a less accurate estimated range

than the BOTMA. Surprisingly, for some scenarios,

this statement is wrong. We give three examples: the

first one contradicts the intuition; for the second, the

performances are similar, and the last is an example of

the superiority of the BOTMA to the BOMTMA.

We consider two mobiles: one maneuvers (denoted

hereafter by the letter “M”) and the second (denoted

“N”) does not. Each of them performs a TMA against

the other.

For each example, the speeds of M and N are

4 m/s and 5 m/s, respectively. The heading of the non-

maneuvering platform is equal to 90 degrees. The kinds

of maneuvering source trajectory have been chosen: a

“surrounding” trajectory (see Fig. 8(a)) and two “es-

caping” trajectories (see Figs. 9(a) and 10(a)). The total

duration is 30 min. The maneuvering platform changes

its course at 15 min. At this time, its location is aligned

with the course of the observer.

The bearings, collected at a sample time of 4 seconds

by each platform, are corrupted by an additive Gaussian

noise with the same standard deviation equal to 1 de-

gree. We have computed the relative accuracy of the

estimated range (at the final time tK) by the mean of the
CRLB: In ¾½(tK )=½(tK), given in percentage, ¾½(tK ) is the
CRLB of the estimated final range.

Typical scenarios are plotted in Figs. 8, 9 and 10,

(“M” and “N” give the initial positions of the two plat-

forms) together with the corresponding ¾½(tK )=½(tK) vs.
½(tK). In these figures, the lines joining circles are re-
lated to the conventional BOTMA and the lines joining

the “+” are for the BOMTMA. We have changed the

final range by modifying the initial position of the non-

maneuvering platform along the x-axis.
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Fig. 7. 500 leg-by-leg BOMTMA estimates of the final position.

EXAMPLE 1 In this scenario, the first and the second

headings of the maneuvering source are respectively

¡135± and 135±.
EXAMPLE 2 The first and the second headings of the

maneuvering source are respectively 135± and ¡135±.
EXAMPLE 3 The first and the second headings of the

maneuvering source are respectively ¡135± and 135±.

5. CONCLUSIONS

We have presented the problem of bearing-only tar-

get motion analysis when neither the source nor the

observer maneuvers. This yields the so called partial

BOTMA, since the observability is missing. Then, we

have proposed another estimate for a two-leg source tra-

jectory by bearings-only TMA from a non-maneuvering

observer, which is an alternative solution of the maxi-

mum likelihood estimate proposed in [7]. The compu-

tation time is reduced by a factor of approximately 2.5.

The price is a small degradation in the statistical per-

formance. We have also shown, by three examples, that

the superiority of the BOTMA to the BOMTMA is not

always guaranteed.

Further work will be carried out to extend this

estimation principle (leg-by-leg estimates, then fusion

of them) to the case of several legs. Robustness to

the assumption of constant speed and of the immediate

change of heading will be the topic of another paper [8].

But the challenge remains to construct a powerful

test to detect the maneuver of the source.

APPENDIX. COMPUTATION OF THE CONFIDENCE
BANDS

To conduct properly the computation, we need to

define the following vector X̃ = [y _x _y]T whose com-

ponents are the last there components of X (defined

in Subsection 2.4). We rename the components of X̃ as
follows: X̃ = [x1 x2 x3]

T for convenience and we define

the function

μk(X̃) = atan

·
½̄sin¯t¤ +(tk ¡ t¤)(x2¡ _xO)
x1¡ yO(t¤)+ (tk ¡ t¤)(x3¡ _yO)

¸
which would be the noise-free bearing of a source at

time tk, whose trajectory would be defined by X.

Under classic Gaussian assumption about the addi-

tive noise, the Fisher information matrix is

F(X̃) =
KX
k=1

1

¾2k
r
X̃
μk(X̃)rTX̃μk(X̃)

and the CRLB of X̃ is B(X̃) = F(X̃)¡1.
We go into detail about the expression of r

X̃
μk(X̃)

by defining the following quantities

¢t(tk) = tk ¡ t¤

¢x(tk) = ½̄sin¯t¤ +¢t(tk)(x2¡ _xO),
¢y(tk) = x1¡ yO(t¤)+¢t(tk)(x3¡ _yO),

r(tk) =
q
¢2x(tk) +¢

2
y(tk):
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Fig. 8. (a) Typical surrounding maneuvering platform trajectory for Example 1. (b) The relative accuracies of the estimated ranges for the

first example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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Fig. 9. (a) Typical escaping maneuvering platform for the second example. (b) The relative accuracies of the estimated ranges for the

second example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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Fig. 10. (a) Typical escaping maneuvering platform trajectory for the third example. (b) The relative accuracies of the estimated ranges for

the third example (“o” for the conventional BOTMA, “+” for the BOMTMA).
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We deduce that

r
X̃
μk(X̃) =

1

r2(tk)

264 ¡¢x(tk)
¢t(tk)¢y(tk)

¡¢t(tk)¢x(tk)

375 :
The computation of the confidence bands is based

on the Jacobians of the two following mappings

X̃ =

264x1x2
x3

375 7! Y =

264y1y2
y3

375 7!V(½) =

·
v(½)

c(½)

¸
,

with

Y =

266666664

atan

·
½̄sin¯t¤

x2¡ yO(t¤)

¸
p
(x3¡ _xO)2 + (x4¡ _yO)2p
(½̄sin¯t¤ )

2 + [x2¡ yO(t¤)]2

atan

·
x3¡ _xO
x4¡ _yO

¸

377777775
and

V(½) =

24v(½) =
p
(½y2 siny3 + _xO)

2 + (½y2 cosy3 + _yO)
2

c(½) = atan

·
½y2 siny3 + _xO
½y2 cosy3 + _yO

¸ 35 :
The CRLB of V(½) is then

B(V(½)) = J2J1B(X̃)J
T
1 J

T
2

where J1 is the Jacobian of the mapping X̃ 7! Y and J2
is the Jacobian of the mapping Y 7! V(½). We evaluate
the confidence bands of each component of v(½) and of
c(½) from the diagonal terms of B(V(½)).
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Toulon et du Var, Toulon, France, in 1988 and the title of Docteur de l’Université
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